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This paper proposes a new control scheme, automatic learning control, to eliminate unbalance effects, which adversely affect the
operation of active magnetic bearings. This control method is based on time-domain iterative learning control and gain-scheduled con-
trol. The controller can utilize the optimal control currents for the unbalance compensations. In addition, the variable learning cycle
and variable learning gain are employed in the learning process to achieve better performance against rotating speed fluctuations. The
control algorithm does not require large memory size and intensive computation. We tested the control system in experiments, and the
experimental results prove that the control method is effective over a wide range of operation speeds.
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I. INTRODUCTION

UNBALANCE effects are normally a concern in rotating
machinery. When a rotor’s geometric axis, inertial axis

and an actuator’s magnetic axis are not coincident, the syn-
chronous unbalance force will be induced and it can result
in rotor position runout and machine housing vibrations, es-
pecially for the vibrations with critical frequencies [1]. The
conventional method of balancing is realized by employing
mechanical approaches, for example, the addition or removal
of a small amount of mass from the rotor to reduce the residual
imbalance. The mechanical balancing is a time-consuming
and costly procedure. In addition, the imbalance often changes
during operation in some machines and the mechanical bal-
ancing has limited benefits in this case [2]. An active magnetic
bearing (AMB), which levitates a rotating object (typically,
a rotor in electric machines) in a magnetic field, is proven to
be a good solution to this kind of unbalance problem. With
effective control methods, AMB can generate electromagnetic
(EM) forces to actively control the movement of rotor; thus, the
unbalance effects can be greatly attenuated in machines with
AMB.

Since unbalance disturbance is common in rotating ma-
chinery and it degrades system performance, AMB researchers
pay much attention to this problem, seeking control strategies
to attenuate unbalance effects in AMB. Various unbalance
compensation techniques have been developed since the last
decade [2]–[11]. Early unbalance control techniques were
based on insertion of notched filters in the control loop. The
major drawback of this method is that the notch filters affect
the stability of the control system so that they can be used
in only a limited speed range. A generalized notch filter was
then proposed to overcome this problem [3]. The generalized
notch filter has the advantage in free pole location, which can
enable the filter to process the synchronous unbalance signals
at different rotational speeds. Some designs, which are based
on the state feedback control approach, are also developed to
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stabilize the system with the ability of unbalance disturbance
rejection [4], [5]. State observers were used in these designs to
estimate the state variables which cannot be directly measured
by sensors. However, as pointed out by [6], both notch filter
approach and observer-based state feedback approach have
the drawback that they alter the complementary sensitivity
function of the system such that the stability of the AMB
system is worsened. Later, more research works were focused
on designing an “add-on” controller that may be added to
conventional feedback controllers without altering the system
stability or performance. To attenuate the unbalance effects,
this kind of additional controller should be able to produce
a synchronous control signal according to unbalance signals.
Some control schemes based on adaptive control are developed
to generate this synchronous compensation input [6]–[8].
Frequency-domain iterative learning control (FILC) has also
been applied in active magnetic bearings [9]. Knopse et al.
proposed an adaptive vibration control (AVC) method which
is similar to the frequency-domain iterative learning control
[2]. AVC incorporates a look-up table of gain matrices into the
iterative learning law and selects a gain matrix according to
operation conditions. This look-up table simplifies the control
algorithm by waiving the process of online estimation in each
cycle, but it requires much memory space which is difficult in
many applications, especially for the system operating over a
wide-speed range, like the spindle motors used in hard disk
drives. Therefore, several strategies were then proposed for
relieving its memory requirements [10].

Various methods have been developed and most of the
schemes can provide satisfying control effects. However, most
of the existing methods require the precise prior knowledge of
AMB parameters, which may be unique for each AMB due to
manufacturing errors. Moreover, most of the existing unbalance
control approaches are so complicated that they require the
intensive computational effort or large memory space in digital
processors, which limit the application of these approaches. For
example, the DSP in hard disk drives already needs to process
many issues such as coding, spindle motor drive, servo control,
etc. It is not practical to additionally impose much computation
load or large memory space requirements for AMB control
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when the AMB spindle motor is used. As a result, a practical
unbalance control technique, which does not rely much on
the capability of digital processors while providing excellent
control effect, is needed for AMB unbalance compensation. In
this paper, a control scheme, automatic learning control (ALC),
is presented to compensate the unbalance in AMB. ALC is
based on time-domain iterative learning control (ILC). Variable
learning cycles (or trials) and gains for different speeds are used
instead of fixed ones in the learning law to enable controller to
work in a wide range of speeds. Another advantage of this con-
trol scheme is that it has better transient performance against
rotational speed disturbances. Experimental results prove the
effectiveness of ALC scheme in a wide range of rotational
speeds.

II. AMB MODEL AND UNBALANCE ANALYSIS

A totally suspended magnetic bearing system is composed
of five degree-of-freedom (DOF) suspensions, i.e., four radial
DOF controlled by two identical radial bearings and an axial
DOF controlled by a thrust bearing. An AMB system is usually
arranged in such a way that the axial subsystem can be totally
separated from other radial subsystems. Furthermore, because
the unbalance effects appear in radial directions, only motions
in the four radial DOF will be analyzed in this paper. To sim-
plify the description, in this section, only one radial bearing is
analyzed to show the unbalance problem in the AMB system.
The other radial bearings have similar unbalance effects. Fig. 1
shows a two-DOF closed-loop radial AMB system. Position
sensors are used to detect the rotor position in both DOFs. A
controller receives position signals and generates corresponding
control currents to stabilize the AMB system, which means cur-
rents in the two opposite electromagnet coils are

respectively, where is the bias current and
is the control current. The EM force in an axis can be there-

fore expressed as [12]

(1)

where is a constant related to AMB structure and core ma-
terials of the electromagnet, is the air gap when the rotor is in
the central position, and is the rotor displacement with respect
to the bearing center in this axis. Thus, and are
respectively the air gaps for the two opposite electromagnets.

This EM force can be linearized at the equilibrium point
where , and the equation becomes

(2)

where

(3)

If there is external constant force acting at the rotor, e.g., the
gravity force, a constant partial of the control current, will be
generated by the proportional-integral-derivative (PID) control
circuit to compensate the external force.

Fig. 1. Structure of a two-DOF AMB system.

If the AMB is permanent-magnet-biased, where the bias flux
generated by permanent magnets (PMs) replaces bias current
to produce the same effect, the EM force formula has the same
format as (2). The difference is that for a PM-biased magnetic
bearing, the force-current factor and force-displacement
factor in (2) are related to permanent-magnet parameters
instead of the bias current [13]. The results in this paper can
be easily extended to the case where the PM-biased magnetic
bearing is used.

If there are no other forces except the magnetic bearing force,
according to Newton’s law, the motion of the rotor can be de-
scribed by

(4)

where is the partial weight of the rotor in one DOF, and
is the mass of the rotor.

Therefore, the motion equation for AMB plant can be ex-
pressed in the state–space form as

(5)

Because EM forces in AMB are inherently open-loop un-
stable, a negative feedback controller, usually a PID controller,
must be used to realize the stable control of rotor position. How-
ever, periodical disturbance forces acting on the rotor, for ex-
ample, the unbalance force resulting from the unalignment be-
tween the geometric center and mass center of the rotor, could
induce the periodical runout of the rotor if only the PID control
is applied. The runout of the rotor is generated as the following
analysis.

In order to explain how the unalignment between the mass
center and geometric center of the rotor causes the periodical
runout of the rotor surface, the 2-D plan AMB in Fig. 2 is taken
as an example, with the geometric center , mass center ,
the mass eccentricity , and rotor angular speed . The unbal-
ance force due to this mass eccentricity can be modeled as

(6)

(7)
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Fig. 2. Mass unbalance in AMB.

where the point is the position of rotor geometric center
and is the initial phase of unbalance forces. When
and/or , there also exists EM unbalance in AMB. At this
moment, the geometric axis does not coincide with the EM axis
and their centers have a displacement of .

Similar to (4), applying Newton’s law, the motion equations
of rotor in both and axes are

(8)

(9)

where and are the partial weights of rotor in axis
and axis , respectively. Equations (8) and (9) are based on the
assumption that the cross section of the rotor is perfectly round.
Otherwise higher-order harmonic components would appear in
the right side of the equations, and they could excite higher order
EM unbalance forces in AMB.

Consider the case where the AMB system is designed to keep
and equal, the weight balancing current could be

(10)

Then the motion equations (8) and (9) can be rewritten as

(11)

(12)

In and DOFs, assuming that their PID control parame-
ters are same, we can get

(13)

(14)

where , and are the PID control parameters.

Fig. 3. Runout curve of one DOF.

Solving (11)–(14), the fundamental component of the runout
could be derived as follows:

(15)

where

(16)

(17)

They show that, if the initial angle is not or , the
oscillation of the rotor center and the periodical runout must
appear if only PID control is applied. The experimental result
in Fig. 3 also confirms this phenomenon.

In real cases, the cross section of rotor may not be perfectly
round. This will make the runout curves in and directions
different in their amplitudes.

The mass unbalance in AMB is due to the faults in manufac-
turing procedures, or the quality of the components used. Re-
ducing the manufacturing faults is always concerned, but the
mechanical and material processes are not enough in many high-
performance applications. In these cases, the active rotor bal-
ancing technique can supply a satisfied solution.

Typically, unbalance compensation in AMB is carried out in
two ways: reduction of rotor runout and reduction of coil cur-
rent fluctuations. The former one is quite significant for the ap-
plications that require a high level of rotational accuracy. When
the unbalance force is well counteracted by AMB, the rotor is
strictly rotating around on its geometric axis and its runout is re-
duced to zero. Reducing coil current fluctuation in AMB has the
advantage of attenuating the transmission of synchronous forces
to the bearing housing [9]. When the rotor rotates, the unbal-
ance forces caused by the acceleration of the inertial axis and
the unsymmetrical magnetic field are reacted by the magnetic
bearing and transmitted to the housing. One approach to solve
this problem is to make the rotor rotate around on its system
inertial axis. System inertial axis is defined in this paper to rep-
resent a virtual axis such that if the rotation is about system iner-
tial axis, no force due to unbalance is transmitted to the housing.
Elimination of current fluctuations in AMB coils means that the
unbalance has no influence on AMB actuator. So the rotor is well
balanced and rotates about its system inertial axis. Another ad-
vantage of reducing current fluctuation is the significant saving
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of copper loss in PM-biased magnetic bearings [14]. In this
paper, both compensation modes will be realized with learning
control schemes.

III. TIME-DOMAIN ITERATIVE LEARNING CONTROL SCHEME

Iterative learning control was first developed with the ob-
jective of eliminating periodic tracking errors in robots [15].
Because of its attractive characteristics, ILC has become in-
creasingly popular since its birth in 1984. Recently, ILC has
been applied in various applications, such as robotic manipu-
lators and motor control [16], [17].

The basic idea of ILC is to improve the control performance
of the present cycle by incorporating past control information
in current control input, and this is very different from most
other control methods. In ILC, the controller first calculates ,
the difference between the system output and the desired
output . Then the controller yields a new input for the
next cycle according to the learning law. The new input is tem-
porarily stored in the memory. In this process, the new input is
the sum of the old input in previous cycle and an error correction
item, and the input can make the tracking error be decreased
cycle by cycle. Through this learning process, a desired input
signal could be finally obtained and the error can therefore be
minimized.

A general iterative learning law in time domain can be de-
scribed by

(18)

where is the number of sampling points in one cycle, is
the controller input, is iteration (or cycle) number, the scalar

is defined as the learning gain, and the error is

(19)

Typically, a discrete-time closed-loop AMB system model of
one DOF has a state–space form of

(20)

The details of , and are explained in the Appendix.
According to the convergence condition [18], if the learning

gain in (18) satisfies

(21)

thus for all

(22)

Actually, the system model parameters could be ignored in
the process of determining the learning gain. A suitable learning
gain able to yield the required performance can be easily ob-
tained by online tuning like tuning a PID controller. The detailed
method of choosing a learning gain is discussed in [19].

To improve the robustness of the controller, a forgetting factor
is introduced in the learning process to increase the robust-

ness of the learning control algorithm against the noise, jumps
of the unbalance forces, rotor speed variation, and other un-
known perturbations. The reasons for using such a factor have

been elaborated in detail by [20]. A negative effect of forgetting
factor is that it can weaken the compensation effect of iterative
learning control, making final error not converge to zero. The
larger the forgetting factor is, the larger the final error is but the
more robust the learning controller is. Therefore, should be
selected at a balance value to produce acceptable compensation
effect as well as satisfactorily adequate robustness of the itera-
tive learning controller. The learning controller with a forgetting
factor becomes

(23)

To reduce the rotor runout, the displacement signal is the
controller input for ILC. From (23), the learning controller for
reducing rotor runout is

(24)

where is the AMB current generated by ILC controller and
is the rotor position with the unbalance disturbance.
To reduce the current fluctuation, the current fluctuation

signal is the controller input for ILC. The learning controller
for reducing current fluctuation can be described as

(25)

where is the corresponding synchronous control current
for the rotor’s displacement, which is ac component of PID con-
trol currents in (13) and (14) when the rotor has the runout.

IV. AUTOMATIC LEARNING CONTROL SCHEME

The ILC unbalance compensation scheme introduced in
Section III is developed for a fixed rotational speed. This
controller is not suitable for the case where the motor speed
has fluctuation. In addition, the ILC scheme in Section III is
not robust to the speed disturbance. All these limit the appli-
cation of the proposed ILC controller. The errors of the speed
sensor are also the source to cause speed signal fluctuation.
To improve the robustness of the ILC scheme and make AMB
capable of working over a wide-speed range, the following
control scheme which is defined as automatic learning control
(ALC) is proposed. The main ideas of ALC are composed of
the following improvements.

1) Learning gains for different rotational speeds are stored
in a look-up table and are used iteratively during AMB
operation.

2) Obtain the fundamental component from the original po-
sition signal or current signal.

3) Use an interpolation method to compute the corre-
sponding learning gains for the current rotational speed.

4) Change the length of learning cycle with rotation speed
and keep it always equal to the rotation period.

The learning gains and the length of a learning cycle are auto-
matically determined in Step 3) and Step 4), respectively. There-
fore, ALC can automatically adjust the gain and the cycle length
itself during operation to make it suitable for working at the cur-
rent rotational speed.
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Fig. 4. Synchronous signals processing unit.

A. Process Synchronous Signals

Generally in ILC, a low-pass filter is required because the
high-frequency noise could make the learning process unstable.
In ALC, the controller works in a wide range of motor speeds, so
the filter should be able to obtain synchronous components from
original runout and current ripple signals at different speeds.
Fourier analysis technique is used in ALC to process the syn-
chronous signal. The synchronous signal can be obtained ac-
cording to the following:

(26)

(27)

(28)

where is the original signal, is the synchronous
signal, is the rotational angular velocity, is the rotational
period, is the amplitude of synchronous sine wave, and
is the amplitude of synchronous cosine wave. The process of
obtaining synchronous components is shown in Fig. 4.

B. Gain-Scheduled Control

The variation of rotational speed could lead to the variation of
AMB plant parameters [12], so a learning gain may be effective
at one rotating speed but may lead to instability at another speed.
To solve this problem, in the required speed range, the con-
troller in ALC should be able to adjust its learning gain to dif-
ferent rotational speeds. Gain-scheduled control is employed to
achieve different learning gains according to the rotating speed.
The learning law of ALC can be described as

(29)

In the application of ALC, the learning gains for a set of
speed points must be obtained beforehand and the speed points
should be distributed evenly in the required speed range. Op-
erating in the decentralized control mode, the proposed ALC
scheme needs only one learning gain for each DOF at one speed.
The tuning process is simple and no identification process is re-
quired. The learning gains for these rotational speeds are then
stored in a look-up table. It is clear that the learning gains oc-
cupy very little memory space in digital controllers. During op-
eration, the controller can automatically adjust its learning gains
according to rotating speeds. For a particular speed, the value
of the learning gain can be calculated by linear, high order,

Fig. 5. Automatic learning control scheme.

or spline interpolations [21] based on the learning gains in the
look-up table.

C. Variable Learning Cycle

In the ILC scheme for AMB unbalance compensation, the
length of learning cycle is equal to the constant rotating pe-
riod, i.e., the time used in one revolution. However, this limits
the function of ILC to a specific speed. An iterative learning con-
troller designed for one rotating speed cannot work at another
speed. Therefore, this control method is not suitable to the ap-
plications where multispeed operation is required. Furthermore,
because the controller is only suitable for a fixed speed, it is
sensitive to the speed disturbance. In practice, the speed fluc-
tuation always exists due to the external and inner disturbances
of the rotating motor and AMB, and error of the speed sensor.
The speed disturbance could adversely affect the control perfor-
mance of ILC. If the speed disturbance is large enough, it could
even make the ILC controller fail.

In ALC, the length of learning cycle is not a fixed one. It
varies with the variable learning cycle being kept equal to the
rotational period of AMB to adapt the controller to the changing
speed. The learning law of ALC can thus be described by

(30)

(31)

where is the sampling frequency.
The proposed ALC scheme is illustrated in Fig. 5.

D. Decentralized Control Mode

The learning law explained in (30) is designed for one-DOF
AMB control. As explained in Section II, four radial DOFs are
concerned in this paper to realize the unbalance compensation,
and therefore there are four inputs and four outputs for the ALC
controller. To simplify the control algorithm, the decentralized
control mode is used. That is to say, the four-DOF system is
divided into four, one-DOF subsystems and the output in one
subsystem is only considered in the controller dedicated for that
subsystem, as illustrated in Fig. 6. The advantage of decentral-
ized control is obvious as the computational load is reduced up
to 75% compared to centralized control mode.
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Fig. 6. Decentralized control mode for ALC scheme.

Let , and represent the radial axes of an AMB
system. The ALC law for the decentralized control mode can be
expressed as

(32)

where denotes the axis name, is the ALC output for axis

is the error signal for axis , and is the learning
gain for axis .

E. ALC Scheme for Unbalance Compensation

To reduce the rotor runout, the displacement signal is as-
signed as the controller input, so the current signal generated
by ALC controller should be

(33)

To reduce the fluctuations of the coil current, the synchronous
current fluctuation is the input of the ALC controller. Therefore,
the current signal generated by ALC controller should be

(34)

The runout and current fluctuation will converge in the
learning control process provided that the learning gain satisfies
the convergence criteria. Therefore, the compensation scheme
can force the rotor to rotate around on the geometric axis or
system inertial axis.

The proposed ALC compensation scheme for the AMB un-
balance problem is illustrated in Fig. 7. A feedback PID con-
troller, which can be already designed for the optimum transient
response, is needed to work together with the ALC controller.
The ALC controller is only responsible for providing the unbal-
ance compensation current.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed automatic learning control
scheme, an AMB experiment system, as shown in Fig. 8, is used
to test ALC’s performance on the rotor runout reduction and
current fluctuation reduction, respectively. The diameter of the
motor is 50 mm, and its speed can be adjusted to 4000 rpm.
Though the system contains a magnetic thrust bearing, it did not

Fig. 7. ALC compensation scheme.

Fig. 8. AMB experimental system.

affect the radial unbalanced tests designed for verifying the ALC
scheme presented. Variable reluctance sensors are used in mag-
netic bearings to detect the rotor positions. A decentralized PID
controller is used in the experiment to stabilize the AMB system.
When ALC is turned off, only the PID controller works. When
ALC is turned on, it works together with the PID controller.

A dSPACE DS1103 controller board is used to perform
real-time digital control on the AMB system. In the experi-
ments, the sampling frequency for A/D conversion is 10 kHz.
The bias current is 1.0 A in the experiment. The force-current
factor is 30.45 N/A, and the force-displacement factor
is 57.97 N/ m. The mass of the rotor is 1.541 kg.

A. Reducing Rotor Runout

The proposed ALC scheme for realizing the rotation around
on the geometric axis is tested in the experiment. The experi-
ment is carried out at a constant speed of 2800 rpm (46.67 Hz).
Rotor runouts at the four radial axes with ALC scheme are
recorded and compared with those without ALC scheme. A por-
tion of the experimental results are shown in Figs. 9 and 10. The
synchronous rotor runout at 46.67 Hz is the target to be mini-
mized. The forgetting factor is kept equal to 0.005 for enough
robustness.
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Fig. 9. Comparison of rotor position orbits. (a) Without ALC scheme. (b) With
ALC scheme.

Fig. 9 shows the rotor position orbits (a) without unbalance
compensation and (b) with proposed ALC scheme. Without un-
balance compensation, the maximum runout is 48 m. With the
effective control of ALC scheme, maximum runout is reduced to
3 m. The motor speed is controlled at 2800 rpm, and its varia-
tion is in range of 15 rpm, that is, the speed error is about 0.5%.
This speed variation could negatively affect the performance of
a conventional ILC controller. However, the ALC compensation
scheme presents the satisfactory performance when the speed is
fluctuating. This is because ALC could automatically adjust the
length of learning cycle according to the rotating speed, so the
controller can automatically work at different speeds.

Fig. 10 shows the rotor runout curves in axis and the cor-
responding frequency spectrums (a) with only PID control and
(b) with ALC scheme. The magnitude of steady-state runout

Fig. 10. Rotor runout in axisX and its frequency spectrum. (a) Without ALC
scheme. (b) With ALC scheme.

is 44 m for PID control, but is only 3.4 m for ALC con-
trol. With the ALC scheme, the synchronous component, the
one at 46.67 Hz, is significantly reduced to a very small value.
Therefore, the overall runout values decrease substantially in the
experiment.

The proposed ALC scheme is also tested in a speed run-up
test. The rotating speed rises from 1200 to 3200 rpm. The ro-
tating speed and the peak-to-peak rotor runout values with and
without ALC compensation are respectively recorded for com-
parison. The run-up test result is shown in Fig. 11. The ALC
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Fig. 11. Rotor position runout values versus rotational speeds.

control scheme exhibits good performance during this experi-
ment. Without ALC, the runout rises dramatically when the ro-
tational speed is approaching 2800 rpm. However, with ALC the
runout curve is almost flat and has no obvious difference com-
pared to other speeds.

B. Reducing Coil Current Fluctuation

The proposed ALC scheme is also applied to reduce syn-
chronous coil current fluctuations in AMB coils. Similarly, the
experiments are composed of two tests, the constant speed test
and the variable speed test. The constant speed test is still car-
ried out at 2800 rpm. The forgetting factor is 0.005 in both
experiments.

The coil currents of one electromagnet in axis are
recorded to compare the performances with and without ALC.
The recorded coil currents are the sum of its bias current

and control current . But the coil current in the other
electromagnet is the difference of its bias current and control
current, as introduced in Section II. However, they have the
same fluctuations.

Fig. 12 shows the fluctuations of the recorded coil currents in
axis and the frequency spectrums (a) without ALC and (b)
with ALC. The magnitude of current fluctuation without ALC is
0.384 A. With ALC compensation, the magnitude of the current
fluctuation is reduced to 0.036 A.

The ALC scheme is also verified to reduce the coil current
fluctuations during rotor speed run-up. ALC also presents sat-
isfactory compensation performance in this experiment. Fig. 13
illustrates peak-to-peak values of coil currents fluctuations. It
could be seen that the coil current fluctuation decreases sub-
stantially when ALC is turned on. In the experiment, the con-
trol current without ALC increases a lot when motor speed is
approaching the critical speed. With ALC, the fluctuations al-
ways maintain within a small value in the experiments.

In addition to attenuate vibrations of machine housing, re-
ducing fluctuations of coil current has another advantage for
PM-biased AMB, i.e., reduction of copper loss [14]. Because in
PM-biased AMB, bias flux is provided by permanent magnets
rather than bias current in classic AMB, there is no bias cur-
rent in PM-biased AMB. As a result, control current is the only

Fig. 12. Fluctuations of coil current and its frequency spectrum. (a) Without
ALC. (b) With ALC.

component in electromagnet coils. Copper loss in this kind of
AMB is proportional to the square of its effective control cur-
rent. Thus, its power consumption and generated heat during
operation will be reduced significantly by ALC. Smaller con-
trol current and less generated heat allow the power electronics
to be further integrated, making it possible to put control elec-
tronics for small AMB systems in a multichip module (MCM).
Fig. 14 shows the comparison of effective values of the control
current between ALC off and ALC on. The control current in
the latter case can be reduced significantly.
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Fig. 13. Fluctuations of coil currents versus rotational speeds.

Fig. 14. Effective control currents versus rotational speeds.

C. Discussions

It can be observed that a small amount of rotor runout and
control current fluctuations still exist although time-domain ILC
or ALC is turned on. The reasons can be explained as follows.

1) The existence of the forgetting factor. According to the
analysis before, the forgetting factor in ILC can increase
the robustness of the controller with the expense of
nonzero steady-state tracking error. Therefore, the forget-
ting factor should be kept as small as possible provided
that the controller robustness is enough for the application
requirement.

2) The existence of higher order runout components which
are caused by high order repeatable runout and nonrepeat-
able runout. The unbalance analysis in the previous sec-
tions is based on the assumption that the rotor (shaft) is a
rigid body. However, this proximity does not consider the
characteristics of a flexible body. In a flexible body, higher
order harmonics could be excited by the unbalance force
and other external forces. The amplitude of the excited vi-
brations depends on flexible body characteristics, the ex-
citation frequency of the disturbance, and characteristics

of applied controllers. In the frequency plots of the experi-
mental results, higher order runout components and AMB
coil currents can be observed, but only the synchronous
component is managed to be eliminated. The higher order
components of rotor runouts and control current fluctu-
ations are left unprocessed. These residual higher order
components can be further processed to meet higher oper-
ation requirements. For example, if the higher order com-
ponents could be obtained from the filter and input to the
ALC controller, the controller could suppress the higher
order components as well as synchronous components in
the iterative learning process.

3) Transient response during rotational speed fluctuations
or unbalance conditions changes. Changes of unbalance
conditions or rotational speed could result in the variation
of control effects. During the process of speed changing,
the transient rotor runout or coil current fluctuation could
increase temporarily in the ALC scheme and come back
to steady state very quickly. Because ALC is designed in-
sensitive to the rotating speed fluctuation, the influence of
speed variation is minimized.

VI. CONCLUSION

In this paper, the unbalance problems in AMB are analyzed.
The unbalance forces exist in the AMB system and they can
induce the rotor runout and the fluctuations of the AMB con-
trol current, which are undesirable in applications. An effec-
tive control method, automatic learning control, is proposed to
compensate the unbalance effects to reduce rotor runout and
coil current fluctuations. The ALC scheme is developed from
time-domain ILC and has the ability to work in a predetermined
wide-speed range. During operation, ALC can automatically ad-
just its learning gain and cycle to make itself suitable for dif-
ferent speeds. Experimental results prove that ALC can signifi-
cantly reduce the rotor runout as well as the fluctuations of AMB
control current. ALC is more robust than the ILC to the distur-
bance of the rotor speed.

APPENDIX

In order to introduce the discrete model as shown in (20), the
DOF of axis is taken as an example to obtain the elements
of matrices , and . To be simple, the index of the axis
is omitted. First, the control current of AMB in the continuous
combined ALC and PID plant can be expressed as

(35)

The motion equation is

(36)
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Let
, then

(37)

Assume

and (38)

then the continuous-time ALC closed-loop AMB system can be
described by

(39)

The discrete-time closed-loop AMB system is

(40)

where , the sampling
interval

and (41)

For the DOF of axis , the input of the module is

(42)

In this way, the discrete modules of all DOFs can thus be built
up.
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