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Permanent-Magnet DC Motor in Dynamic
Conditions by Time-Stepping Technique
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Abstract—A method of modeling and numerical simulation of
a brushless permanent-magnet dc motor using time-stepping fi-
nite-element technique is presented. In the proposed model, the
electromagnetic field equations, the stator circuit equation, and the
motion equation are solved simultaneously at each time step; thus,
the eddy-current effect, the saturation effect, the rotor movement,
and the nonsinusoidal quantities can all be taken into account di-
rectly in the system of equations. Dynamic conditions of the motor
at starting, step voltage variation, and load torque changes are
investigated using the proposed dynamic model.

Index Terms—Brushless permanent-magnet dc (BLDC) motor,
dynamic analysis, time-stepping finite-element method (FEM).

1. INTRODUCTION

HE dramatic improvement in power electronic switching

devices, integrated circuits, developments and refine-
ments in permanent-magnetic materials, and manufacturing
technology have led to the development of brushless per-
manent-magnet motors that offer significant improvements
in power density, efficiency, and noise reduction. Brushless
permanent-magnet motors are especially demanded in clean
and explosive environments such as aeronautics, robotics,
food and chemical industries, electric vehicles, medical in-
struments, and computer peripherals. Hence, there has been
an enormous interest in the analysis and design of brushless
permanent-magnet motors in order to make them more efficient
and more robust [1]-[7].

Prediction of motor performance is necessary for the evalu-
ation of motor designs. Modeling and simulation is a preferred
method in designing motors compared to building motor proto-
types which is more costly [8]. With the advent of high-speed
computing power and more powerful numerical methods in re-
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cent years, it has become practical to use finite-element methods
(FEMs) to compute the performance of electrical machines in
both steady state as well as under transient and dynamic condi-
tions [9]-[13]. Numerical simulation of electrical machines will
be based on fewer assumptions to give a higher accuracy at the
expense of computing requirements. The most powerful method
for investigating the steady-state and dynamic performance is
circuit-field-coupled time-stepping FEM which can couple the
field equations with the motion and circuit equations and solve
simultaneously at each time step. Therefore, the solution can
take into account the saturation effect, the eddy-current effect,
the rotor movement, and nonsinusoidal quantities that are very
difficult to consider using analytical methods. Many empirical
factors then become unnecessary [14], [17].

In this paper, modeling and numerical simulation of a brush-
less permanent-magnet dc (BLDC) motor using time-stepping
FEM is presented. The proposed model has been successfully
used to simulate the dynamic behavior of a BLDC motor at
starting condition, changing of the mechanical load torque, and
step voltage variations.

II. MODELING TECHNIQUE

In the time-stepping FEM model, the inputs are stator phase
voltages, motor geometry, and material characteristics, whereas
all the other variables such as magnetic vector potentials, cur-
rents, rotor positions, and the speed are calculated. The magnetic
field equations for the stator and the rotor are written in their
own coordinate systems. The solutions of the two field equa-
tions are matched with each other in the air gap. The rotor part
of the FEM mesh is rotated at each time step by an angle deter-
mined from the motion equation.

A time-stepping FEM solver generally requires extensive
computation time to overcome the starting period, especially
when steady-state conditions have to be reached. In this paper,
a current-fed two-dimensional (2-D) complex eddy-current
model is developed first and the solutions gotten from this
model are used as the initial conditions for the time-stepping
FEM solver. Therefore, the computation time to overcome the
starting period of steady-state conditions can be reduced.

A. Motor Topologies

A BLDC motor cannot work without electronic controllers.
The terminal voltages on the stator windings of each phase are
controlled by the power electronic switches. Two phases are
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Fig. 1. BLDC motor configuration and the inverter circuit.
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Fig. 2. Typical input voltage waveforms.

conducting at any instant. Hence, in order to predict both steady-
state and dynamic performance for the BLDC motors, external
circuit and rotor rotation should be coupled with the electromag-
netic field. Fig. 1 shows the configuration of the BLDC motor
and the inverter circuit with predefined switching states. The
typical input voltage waveforms are shown in Fig. 2.

B. Current-Fed 2-D Complex Eddy-Current Model

As mentioned before, while only the steady-state solution
may be of interest, it may take many cycles of computation be-
fore starting transients disappear. This excessive computation
time required to reach the steady-state solution has prompted an
interest in the traditional current-fed 2-D FEM complex eddy-
current model (frequency-domain model). One motivation is
that the steady-state solution in the frequency domain can be
used as a starting point for the time-stepping solver.

2-D eddy-current phenomena are described by the diffusion
equation. For the steady-state time harmonic case, this equation,
in terms of the magnetic vector potential is given by

1924
p Oy?

19%A .
where A is the axial component of the magnetic vector potential
and p is the permeability of the material. The first term on the
right-hand side is the applied source current density and the last

term is induced eddy-current density. By solving the diffusion
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equation (1) using traditional FEM procedure, one can get the
magnetic vector potential A for all the nodes in the solution
region. After obtaining a solution from the frequency domain,
an instant of time was chosen and the time-stepping solver was
started with these vector potential results for initial conditions
[18].

C. Time-Stepping FEM Model

1) Modeling of the Electromagnetic Field: The governing
equation of the magnetic field is represented by Maxwell’s
equation in the form of a magnetic vector potential as

VxwVxA=J )

where A is the axial component of the magnetic vector potential,
J is the current density, and v is the reluctivity of the material.

In the area of the stator conductor, the magnetic field equation
can be represented as

+h g
5 =0.

In iron cores and air-gap area, the magnetic field can be ex-
pressed as

V x (vV x A) 3)

0A 0
+o o
In the air gap and laminated stator iron core, the term o (90 A/0t)
is zero. It can only exist in the solid rotor iron core where eddy
currents cannot be ignored.

There are two models which are commonly used to represent
permanent magnets: a magnetization vector and an equivalent
current sheet. Magnetizing vector method is used in this model.
By using the magnetization vector method [18], the permanent
magnet can be represented as an equivalent magnet current
source as

V x (vV x A) @)

V x (vV x A) =V x (vB,). %)

In (2)—(4), i is the stator phase current, S is the total cross-sec-
tional area of one turn on one coil side, o is the conductivity of
the material, and B, is the remanent flux density of the perma-
nent magnet.

2) Circuit Equation: The stator phase circuit equation for
the proposed BLDC motor is

di,
Vi=Ri,+ L, ¢

7 (6)
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where R is the total stator resistance of one phase winding, L,
is the inductance of the end windings, ¢ is the stator current,
and Vi is the supply voltage and e is the back electromtive force
(EMF).

Back EMF can be represented as

[[am=ffae) o

where [ is the axial length of the iron core; Qt and Q~ are,
respectively, the total cross-sectional areas of the go and return
side of the stator phase conductors of the coils.

3) Motion Equation: The motion equation is

Im (fl_(:: =T.-1TL (®)
where J,,, is the moment of inertia, w is the rotor speed, 1% is
the electromagnetic torque, and 77, is the load torque.

The solution of the field equations (3)—(5) are obtained by
minimizing the corresponding nonlinear energy functional. The
minimization is performed by means of FEM using first-order
triangular elements. Finite-element formulations are discussed
in the next section.

D. Finite-Element Formulation

The variational approach and the Galerkin’s approach are the
two most popular methods to derive the element matrix equa-
tions. In this proposed model, the Galerkin’s method is em-
ployed for the finite-element formulation. This is the particular
weighted residual method for which the weighting functions are
the same as the shape functions. According to the Galerkin’s
method, the magnetic vector potential can be expressed as

A= Z N; A; )

where NNV, are the element shape functions and the A; are the
approximations to the vector potentials at the nodes of the
elements.

The Galerkin’s formulation of the stator conductor field
equation is

I/

ON; 0

3
ON; 0
_ E N:A; t
Vj:1 ! ]+ 83/ 8yy

Jdx Ox

3 .
x S NjA; + N <‘§> dvdy =0. (10)
j=1

Alternatively, in matrix form,

i+ @] = (an

For laminated stator iron core and air gap,

/%

3 3

ON; a
ZNA dz dy = 0.

8N8

(12)
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In matrix form,

[v[G{A}] = 0. (13)
For the rotor iron core,
/ / ON; 0 < 23:
. Jdx Ox —
N; : =0.
—I-//[a Z<8t >]da:dy 0. (14)
In matrix form,
0A
vl + a1 { 5 b <o as)
For the permanent magnet,
// J0A ON; 8A ON; ded
v o1 Oz 8y Jdy vy
N, N;
= // (l//],o <Mm& - ]\43,a )) drzdy. (16)
JJa 19} ox
In matrix form,
v
v[Gl{A} = §(BrX[Ci] — Biy[bi]). (17)

For the circuit equation,

0A 0A di
N;— d2 — N;,— dQ2 ) L,,—S.
// ot ¢ // g 1| T Ly,
Q4+ Q—

(18)
In matrix form,
l 0A 0A
= [({F}),. - (@{F}), ]
+ Ris+ L % (19)
s 7 dt
where
T —/ NiN; dz d —{Aﬁe i:j}
1] /. ] Y /?26 Z;éj
Q://Nidxdy:E
bibj—i—CiCj

/ / ON; ON; 8N ON; dr dy
dr Ox ay 8y

and A, is the triangular area of the element.

4A,

E. Time Discretization

The field equations (11), (13), (15), and (17), the circuit
equation (19), and the motion equation (8) are time dependent.
These equations are needed to discretize in the time domain.
The method of discretization used is based on the following
equations [18]:

{A}y

A TA 0A {AYEFAL _
{5} u—m{m} AT AR )
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Basically, there are three different types of time discretization:

1) forward difference type (8 = 0);

2) backward difference type (f = 1);

3) Crank-Nicholson method (3 = 1/2).
The backward difference type is used in this model because it
has a good convergence rate.

F. Linearization

In the analysis of the electrical machines, the problems are
almost always nonlinear due to the presence of ferromagnetic
materials. Good designs will typically operate at or near the sat-
uration point. The magnetic permeability or reluctivity is non-
homogenous and will be a function of the local magnetic fields
which are unknown at the start of the problem. The most pop-
ular method of dealing with nonlinear problems in magnetic is
the Newton—Raphson method [18]. In this model, field equa-
tions are nonlinear; linearization of these equations is required
before they can be combined with other equations of the system
in a global matrix equation. Newton—Raphson procedure is ap-
plied to linearize the nonlinear system equations. A cubic spline
interpolation algorithm is used to represent the magnetization
curve of the ferromagnetic materials.

Newton-Raphson form of the stator conductor field equation
after time discretization is

vl + Liangs = e

- [%][M]fjm. 1)
In the laminated stator iron core and air gap,
VGIAAILE = —[G[AL. (22)
In the solid rotor iron core,
rar, olT] t+A
V[GIAALRY + 57 DALY
T
= —v[G)[A]LFA — %[AA]Z*“. (23)

In the permanent magnets, the equation is

VIGIAALEY = —v[GIAALFS + g(Brx[Ci] — Biy[bi])

E+1
(24)
and the stator circuit equation is given by
t+AL t+At +1
[AIET°R + A_t[AI]k“ + ?IT
L Q][4
_ _pttAatp . Hortdar 1Y) k
= [ R - A - ST
L A]t
+V+ A—t[I]Ur %l%. (25)

G. Mesh Generation and Rotation

Mesh generation for the FEM should be simple, robust, and
rotor mesh should be allowed to rotate easily. In this approach,
the FEM mesh of the cross section of the BLDC motor is divided
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Fig. 3. FEM mesh before rotor rotation (1899 nodes, 2828 elements).
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Fig. 4. FEM mesh after rotation 5000 steps.

into two parts: the stator and the rotor, with each including a part
of the air gap. Meshes of the two parts are then generated sepa-
rately. The air gap is divided into three layers: two upper layers
belong to the rotor and the rest layer belongs to the stator. The
inner most nodes of the rotor mesh and the outer most nodes
for the stator mesh are connected by the periodic boundary con-
dition (Fig. 3). When the rotor is rotated according to the time
step, the shape of the mesh for both the stator and rotor can be
kept constant and only the coordinates of the rotor mesh and
the periodic boundary condition on the interface are needed to
change. The motor mesh after rotation with 5000 steps is shown
in (Fig. 4). Therefore, in this approach the stator mesh and the
rotor mesh are required to generate only one time and it can
greatly reduce the computing time required to generate the FEM
mesh at each time step [14], [15].

H. Coupling the Rotor Movement With the FEM

After time discretization, the motion equation (8) can be rep-
resented by

Wk = k=1 4 <—TE — TL) x AT (26)

J

and rotor displacement can be determined by the following
equations:

Ab,, = w* x AT
ok =0k 1 AG,,

27
(28)
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TABLE 1

MOTOR SPECIFICATIONS
Voltage 12v
No. of poles 8
No. of slots 12
Rated speed 7200 rpm
Stator outside diameter 28 mm
Rotor outside diameter 30 mm
Stack length 4.5 mm
Air gap length 0.2mm

Fig. 5. Computed steady-state flux distribution.

where 6, is the rotor angle. This step has been carried out in
the post-processing process. The procedure is as follows.
1) Calculate the electromagnetic torque (7) first by using
Maxwell stress tensor method.
2) Use the motion equation after time discretization (26) to
calculate the rotor speed.
3) From that, calculate the rotor displacement (rotor angle)
according to (27) and (28).
The rotor FEM mesh is moved according to the rotor angle 6,,
at every time steps.

III. SOLUTION OF THE SYSTEM OF EQUATIONS

Field equations (21)—(24), and the circuit equation (25)
have to be solved simultaneously. Rotor movement has to be
coupled by using (26)—(28). The coefficient matrix is symmetric,
banded and nonzeros terms are clustered around the main
diagonal. Hence, for the iterative solver, only the upper triangular
coefficient matrix with nonzero elements is stored. At each
iteration cycle, the Incomplete Cholesky Conjugate Gradient
(ICCQG) algorithm is used to solve the large system of equations.
In steady-state performance calculation, the magnetic vector
potentials gotten from the frequency-domain analysis are used
as the initial values for the time-stepping iterative solver.
In dynamic performance calculation, especially for detailed
analysis of the starting period, the initial conditions are started
from zero.
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IV. ANALYSIS AND DISCUSSION OF RESULTS

The developed model has been used to simulate the
steady-state and transient conditions of the exterior rotor
BLDC motor. Motor specifications are listed in Table 1. Be-
cause of the motor symmetry only one quadrant is used as a
solution domain. The computed steady-state flux distribution
is shown in Fig. 5. Forces and torques are calculated by inte-
grating the Maxwell’s stress tensors along a closed path in the
air gap [19], [20]. The cogging torque is calculated when there
is no armature current in the stator winding. The simulated
steady-state electromagnetic torque, the cogging torque, and the
back EMF are shown in Figs. 6-8, respectively. The calculated
and measured stator phase currents at no-load condition are
shown in Fig. 9. It can be seen that the computed and measured
results agree closely. The motor transient responses at starting,
during load changes, and input voltage variations are also
computed and presented in Figs. 10-13.

A. Motor Starting Condition

The developed dynamic model has been used to investigate
the starting condition of the motor. In order to start up the motor
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from the rest position to full speed quickly, the starting torque B Simulation of Changing the Mechanical Load Torque
must be significantly more than the running torque. The simula- The response was verified for a step increase of the mechan-

tion results for the starting condition of the angular speed of the ical load torque from 0.002 to 0.01 N-m when the stator phase
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voltage is 4.5 V and the rated speed is 7200 r/min. The simula-
tion results are shown in Fig. 11.

C. Step Voltage Variation

This situation could arise when the motor speed is controlled
through voltage. Figs. 12 and 13 show the current, torque, and
speed transients when the motor is loaded and the input voltage
is dropped from 4.5 to 2.5 V. It can be seen that both current and
torque instantaneously reverse their direction because the new
voltage is lower than the generated EMF in the winding at the
instant of voltage changed. The speed also goes down.

V. CONCLUSION

A dynamic model for the BLDC motor has been developed
using the time-stepping FEM. In the proposed model, the
external circuit equations and the motion equation are coupled
together with the electromagnetic field equations and solved
simultaneously. Using the developed model, the dynamic per-
formances of the motor have been studied at starting, for load
torque changes, and for variation in input voltage. Simulation
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and experimental results presented in the paper show close
agreement.
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